
Non-hierarchical heterogeneity

Mokhoo Mbobi
Mokhoo.Mbobi@supelec.fr

and

Fréd́eric Boulanger
Frederic.Boulanger@supelec.fr

and

Mohamed Feredj
Mohamed.Feredj@supelec.fr

Suṕelec – Service Informatique
Plateau de Moulon, 3 rue Joliot-Curie
91192 Gif-sur-Yvette cedex, France

ABSTRACT

Modeling languages and platforms generally use hierar-
chy to combine heterogenous subsystems. This approach
avoids the combinatorial explosion of the number of inter-
faces between computation models, but it forbids the use
of components which have inputs or outputs that obey dif-
ferent models.
We propose here a non-hierarchical heterogeneous ap-
proach based on heterogenous-interface components
(HIC). Such components allow the connection of sub-
systems that behave according to different computation
models or domains.
This approach still supports hierarchy in order to structure
complex systems, but, by allowing the use of flat heteroge-
nous models, it makes distributed simulation easier since it
is suppresses the necessity to access the internal structure
of heterogenous components, and make the explicit speci-
fication of what happens at the border of two domains pos-
sible.

Keywords: heterogenous modeling, hierarchical design,
software engineering.

1. INTRODUCTION

The design of a system generally involves the intercon-
nection of several modules that interact or supervise other
modules. The different parts of the system may belong to
different technical domains such a signal processing, con-
trol science, or communication protocols. Each of these

domains has its design tools which correspond to compu-
tation models. A single technical domain may involve sev-
eral computation models: in a communication system, the
protocol may be described with state machines and events,
while the processing of the signal may be handled with Z
or Laplace transforms, leading to a discrete or a continuous
time model.

Heterogenous design languages and platforms support the
concurrent use of several models of computation, but if a
subsystem uses a different model of computation than an-
other, it must be placed at a different level in the hierarchy
of the system. This makes the interactions between com-
putation models much simpler, but it leads to a strong cou-
pling between hierarchy and model changes. Moreover,
since the interface of a component appears at a single level
of the hierarchy, it must use a single computation model.
This forbids the use of components which work at the bor-
der of several computation models.

To make things clearer, let’s consider a level-crossing de-
tector which monitors a signal and produces an event each
time the signal crosses a given level in a given direction.
Such a component receives the signal on one of its inputs
and must obey the semantics of this signal (continuous or
discrete time for instance). The event it produces when
the input signal crosses the level appears on one of its out-
puts, and this output must therefore obey a discrete event
semantics.

Allowing the use of such heterogenous-interface compo-
nents has two main advantages. First, it avoids the use
of obscure hierarchical constructs to model simple func-
tionalities, and second, it allows the explicit specification
of the mapping of one semantics onto another. In our ex-



ample, with the currently available heterogenous modeling
tools, we could choose to use a discrete time semantics for
the level-crossing detector, and to map the occurrence of
an output event to a non-null sample of the output signal.
We could also choose a discrete event semantics and map
the samples of the input signal to periodic events. But both
possibilities do not match the effective nature of this com-
ponent. It may even happen that adapting the semantics of
the signals leads to incorrect behaviors. For instance, in a
continuous time computation model, using a non-null sam-
ple to represent an event could lead to the loss of events
since a signal which is always null excepted for a finite
number of samples may be seen as a null signal by the dif-
ferential equations integrator.
After a brief discussion about the different uses of hier-
archy, we will analyze the support of heterogenous mod-
eling through hierarchy, and then present our new non-
hierarchical heterogenous approach. We will then give two
examples using the discrete events and the synchronous
data-flow semantics to illustrate this approach.

2. HIERARCHICAL DESIGN

Hierarchy allows to consider a complex system as com-
posed of simpler sub-systems. It is therefore a tools to
manage the complexity of a system. This complexity may
come from the behavior of the system or from its structure.

Structural hierarchy

Structural hierarchy is used to identify self-contained sub-
systems and to define their interface to the other sub-
systems. This interface may consist of a set of signals,
or at a higher level of abstraction, of communication chan-
nels which encapsulate more complex communication pro-
tocols. Structural hierarchy allows to design each part of
a system in a separate way once the interfaces have been
specified.

Behavioral hierarchy

Behavioral hierarchy is a way of considering a complex
process as the result of sequential or concurrent simpler
processes. The composition of processes makes use of
communication and synchronization primitives such as
termination detection, process activation or suspension,
rendez-vous or exceptions. Exception handling may be
considered as behavioral hierarchy since it can be seen as
the termination of a process and the activation of the ex-
ception handling process [6].
In [7], the Ptolemy team at the University of California at
Berkeley defines yet another type of hierarchy called “syn-
chronization hierarchy” which can be considered as a spe-
cial case of behavioral hierarchy.

3. HETEROGENOUS DESIGN

A typical heterogenous system looks like shown on fig-
ure 1. It is composed of several sub-systems which may
use different computation models and may even be tar-
geted toward either hardware or software. An execution
model takes care of the activation of the sub-systems ac-
cording to a suitable schedule, and a communication layer
allows the sub-systems to exchange data. The heterogene-

Control

Communications

Input
events

Output
events

            
Sub-systems

Figure 1. Typical structure of a system

ity we are talking about in this article is at the modeling
and design level. It is only related to the rules that govern
the interactions between the parts of the model of the sys-
tem. An implementation of the system may use a single
set of rules onto which the different modeling approaches
would be mapped. On the contrary, two systems which are
modeled using the same model may be implemented with
different rules, for instance the continuous time model may
be used to model both a mechanical system and an electri-
cal system.

Origins of the heterogeneity
The hierarchical structure of the systems and the interac-
tion between different parts of a system may lead to the
interconnection of components that do not use the same
computation model. When one of the components is con-
tained in the other, we have “vertical heterogeneity”. In the
other case, we have “horizontal heterogeneity”.

A0

A1
	�

��

A2
	�

��

Vertical heterogeneity Horizontal heterogeneity

A �- B

In both cases, we must handle the fact that the components
can communicate, but have distinct notions of what com-
munication is since they use different models of compu-
tation. When the heterogeneity is vertical, the semantics
of communications is adapted when a hierarchical level is



crossed. When the heterogeneity is horizontal, we have to
adapt explicitly the semantics of the messages.
A hierarchical heterogenous design [4], adds the funda-
mental issue of the choice of the top-level computation
model which governs the global behavior of the system.
For many applications, the control depends on incoming
data, and the processing of data depends on the control.
However, neither a control-oriented nor a data-processing
oriented top-level computation model may be entirely sat-
isfying. Using horizontal, non-hierarchical heterogeneity
allows to consider both aspects of the system at the top-
level.
In the following, we will not focus on a particular formal
design language, but since we use the Ptolemy platform
for our experiments, we will use its computation models
(calleddomains) and its vocabulary. Since Ptolemy does
not support non-hierarchical heterogeneity, we will have
to propose an extension of its execution model.

Hierarchical heterogenous design
Ptolemy comes with generic actors1 which can be used in
several domains2. The host domain defines the way the
actors are activated and communicate. A generic actor, be-
ing able to adopt a sensible behavior in several domains,
is domain-polymorph. Domain-polymorphism is the prop-
erty that allows an actor to behave properly in any domain,
just as polymorphism in object-oriented languages allows
to consider any instance of any subclass of a given class C
as an instance of C.
Generic actors and domain-polymorphism allow the use of
common services like reading data from files or displaying
data in graphs in almost all domains. However, a generic
actor adopts the semantics of the domain in which it is
used, so there is no real heterogeneity in genericity.
In Ptolemy, a model can have only one director, so it can
use only one domain. An heterogenous system must there-
fore contain several models, each one having its own di-
rector, and the models must be structured in a hierarchy, as
shown on figure 2.
This system uses domain A at the top level. One of its
actor behaves as specified by another model which uses
domain B, and another behaves a specified by a finite state
machine. Any state of the state machine can be refined as
another state machine or as a model using domain A.
This hierarchical heterogeneity is used in many architec-
ture description languages such as SpecC [1], Superlog [2]
and so on. It is also used in heterogenous modeling and
design platforms such as SystemC [3], El Greco [5] and
Ptolemy II [7].

Non-hierarchical heterogenous design
Non-hierarchical heterogeneity allows the use of actors
that obey different computation models at the same level of
the hierarchy. This implies that a model can contain actors

1In Ptolemy, a component of a system is called anactor
2A domain is the implementation of a computation model

-

-

-

-
- -

-

-

-

-
- - ����

��
��

����R

I

Synchronous
data-flow

Discrete
events

Finite state machine

Figure 2. Hierarchy of heterogenous models

which communicate according to different semantics, and
therefore that an actor may have inputs and outputs of dif-
ferent natures. Such actors have an heterogenous interface,
and we will see that supporting heterogenous-interface ac-
tors is the key to non-hierarchical heterogenous modeling.

Since the semantics of a computation model is enforced
by a director, a non-hierarchical heterogenous model may
contain several directors, each director being in charge
of the actors which use its computation model. An
heterogenous-interface actor will be handled by as many
directors as it has different types of inputs or outputs. How-
ever, these directors must be coordinated to take into ac-
count the fact that the reaction of an actor according to a
computation model may have consequences on its behav-
ior according to other computation models.

4. THE NON-HIERARCHICAL
APPROACH

One of the main advantages of non-hierarchical hetero-
geneity is the ability to specify what happens when data
goes from one computation model to another. In the hier-
archical approach, the data is either transformed when it
crosses a hierarchical boundary (for instance by adding a
time stamp when some data goes from an untimed domain
to a timed domain), or it must be interpreted in the receiv-
ing model (for instance by considering a null value as a
lack of event and a non-null value as an event occurrence).

By using heterogenous-interface components, we elimi-
nate the need for such implicit semantics conversions and
give entire control of the interpretation of information to
the designer of a system. An heterogenous-interface com-
ponent communicates through its inputs and outputs ac-
cording to the semantics of their associated domain. The
interpretation of data from a domain into another domain
is explicitly stated in the behavior of the actor.



Structure of a HIC

An heterogenous-interface component is a component
which has ports (inputs or outputs) which communicate
according to different computation models, as shown on
figure 3.

-

Tokens from
domain X

Internal behavior

with X and Y aspects s
Tokens to
domain Y

Figure 3. Structure of a HIC

Such a component may be either atomic (its behavior is not
expressed in terms of other actors but coded in a program-
ming language), or composite, in which case it will contain
other actors and heterogenous-interface components.
The heterogenous communication interface of HICs im-
plies that they have an heterogenous activation interface:
such a component must be activated in the context of a
director when it receives data from an actor which is man-
aged by this director. When the reaction to its activation by
a director triggers the production of data toward an actor
which is managed by another director, it must be activated
by this second director in order to be able to transmit this
data.
This shows the necessity to define an heterogenous execu-
tion model which governs the way different directors acti-
vate a HIC in an heterogenous model.

Heterogenous flat models

For the discussion about the heterogenous execution
model, we consider a very simple model which contains
two actors and a HIC. Actor D1 belongs to domain D1 and
actor D2 belongs to domain D2. Both have ports that com-
municate only according to the semantics of their domain.
Actors D1 and D2 communicate through the HIC which
will make the data produces by D1 meaningful to D2. The
overall behavior of this system as shown on figure 4 can be
decomposed in three parts:

1. the D1 to HIC part,

2. the behavior of the HIC,

3. the HIC to D2 part.

The connections between the components lead to the fol-
lowing schedule for the operation of the model:

HICD1 domain D2 domain

D1->HIC HIC->D2

behavior
of

HIC

A1

HicOut
A1Out HicIn

A2

A2In

HIC

Figure 4. Heterogenous model with a HIC

D1 HIC D2

-communication
processing

�

communication-

D1 to HIC part
The director of the D1 domain makes the D1 actor react.
The D1 actor produces data on its output, and since this
output is connected to the D1 input of the HIC, the director
of the D1 domain makes the HIC react. From the point of
view of the D1 director, the HIC is seen as an actor in the
D1 domain. This means that the D2 output of the HIC is
not seen by the D1 director.

HIC processing
When the HIC is activated by the D1 director, it sees the
data on its D1 input and processes it. During this process-
ing, it needs to produce data on its D2 output. However,
producing data in domain D2 requires that the D2 director
is informed of this production so that the data can be routed
to the input of the D2 actor. Therefore, the HIC must be
activated by the D2 director so that it can send its data on
its D2 port.

HIC to D2 part
Since the output port of the HIC is connected to the input
port of the D2 actor, the D2 director activates the D2 actor
which detects and reads the data on its input, and processes
it.



5. IMPLEMENTATION IN PTOLEMY II

During the HIC processing part of the behavior of an het-
erogenous model, we have seen that when the HIC needs
to produce some data in a domain for which it is not cur-
rently activated, it must postpone the production until it is
activated by the director of this domain. The problem is
that the HIC must inform the director that it needs to be
activated in this domain. A simple solution would be to
allow the HIC to request an activation from the director.
However, the example we have chosen here is very simple
since the HIC interacts with only two domains. When a
HIC interacts with more domains, the order in which those
domains must activate it must be determined according to
the topology of the model, and even according to the se-
mantics of the domains.
In our experiments with heterogenous models in
Ptolemy II, we try to reuse as much as possible of
what already exists. So, adding a method to the directors
classes to allow a HIC to request an activation is something
we try to avoid. A solution which involves no changes
to existing classes in Ptolemy II is to introduce a new
director which we call anHDirector. An HDirector does
not implement a new computation model: it adds support
for HICs. It is a kind ofmeta-directorwhich schedules
the activation of HICs by the regular directors (those
who implement computation models). The role of the
HDirector is also to let the regular directors see only the
actors which belong to their domains. So, in our example,
the D1 director would only see the D1 actor and the HIC
as a D1 actor, with only its input. The D2 director would
only see the D2 actor and the HIC as a D2 actor, with
only its output. Since both regular director do not see the
connection between the HIC and the actor in the other
domain, the HDirector must maintain the causality chain
between the consumption of data by the HIC on its D1
input and the production of data on its D2 output.
endfigure
Figure 5 shows the complete structure of an heterogenous
model with an HDirector which coordinates the execution
of several regular directors.

6. TECHNICAL INTEREST AND
EXAMPLES

Non-hierarchical heterogenous modeling and
heterogenous-interface components are very interest-
ing for the modeling of many systems where software
more and more importance such as telecommunication
and navigation systems. These systems are evolving from
almost pure signal-processing systems toward systems
with the complex control needed to support several
operating modes or communication protocols. In such
systems, the control part sometimes changes more often
than the signal processing part.

D2DirectorD1Director DnDirectorDmDirector

HDIRECTOR

HIC

Dy

Dz

Dt

Dx

Dx

Dy

Dz

Dt

DxDirector DyDirector

Dx Actor Dy Actor

Coo
pe

ra
tio

n

HDire
cto

r-D
ire

cto
r Cooperation

HDirector-Director

Figure 5. Structure of an heterogenous model

Heterogenous modeling and design has improved the de-
sign of such systems by allowing the explicit specification
of both control and data-processing. Without heterogene-
ity, the only way to add control to a data-processing appli-
cation way to hide this control inside the behavior of the
data-processing operators.

With non-hierarchical heterogeneity, we get the ability
to define explicitly how data is interpreted when it goes
from one domain to another, and we are able to model
heterogenous-interface components. Such physical com-
ponents exist and are used in hardware. For instance, a
modem chip has analog inputs and outputs to the phone
line and has also digital inputs and outputs connected to a
bus. They can easily be modeled using HICs.

Our first example is shown on figure 6. A signal S is ob-
served, and each time its value crosses a given level, an
event occurs. The events may be processed by a feedback
subsystem to regulate some property (phase or frequency)
of the signal. Here, we have chosen to model the signal
by its Z-transform, so we use the Synchronous Data-Flow
domain of Ptolemy II. The level-crossing detector moni-
tors the signal and produces events, so it has an SDF input
and a Discrete Events (DE domain of Ptolemy II) output.
The feedback component is also an HIC since it processes
events in the DE domain and produces data for the signal
generator in SDF.

Our second example is also related to the DE and SDF
domains of Ptolemy II. A packet-switching communica-
tion system transports both data and voice packets. The
arrival of a packet is an event that triggers a process which
discriminates voice and data packets. Voice packets are
opened and their contents undergoes a filtering or compres-
sion process. The resulting samples are then put back into
packets to travel on the network along with the unmodified
data packets.



S DESDF

Feedback

events

Figure 6. Simple exemple of an heterogenous
model

DE

SDF DE

Data packets

Voice/Data
Discrimination

voice
filtering

Packet
building

Multiplexor

Figure 7. Packet switching and voice filtering

The modeling of such systems is more difficult and less
intuitive when heterogeneity is coupled to hierarchy.

7. CONCLUSION

Hierarchical heterogeneity improves the quality of design
tools by allowing the designers to use the most suitable
model for each part of a system. However, we have shown
that, when each change of computation model implies the
creation of a new hierarchical level, obscure constructs ap-
pear in the structure of the system. Moreover, since each
level of the hierarchy can contain only one computation
model, it is impossible to model components with inputs
or outputs that use different models of computation (for
instance analog and digital input/output).
We propose a new approach which allows non-hierarchical
heterogenous modeling by introducing Heterogenous-
Interface Components. These components have inputs and
outputs that communicate according to different computa-
tion models and can be used as bridges between other com-
ponents, without the need for new level in the hierarchy of
the system.
With this approach, the hierarchical structure of the model
can match the hierarchy of the parts or of the functionali-

ties of the system. However, the execution model is more
complex since the different computation models used in
the system must be coordinated. However, our preliminary
implementation in Ptolemy II let us think that this coordi-
nation may be achieved with little impact on existing com-
putation models.

References

[1] http://www.specc.org/.
[2] http://www.superlog.org/.
[3] http://www.systemc.org/.
[4] M. Auguin. Co-conception de systèmes sṕecialiśes sur com-

posant. InÉcole th́ematique sur les systèmes enfouis, I3S,
Universit́e de Nice-Sophia Antipolis, Novembre 2000.

[5] J. Buck and R. Vaidyanathan. Heterogenous modeling and
simulation of embedded systems in el greco. Technical re-
port, Synopsys Inc.

[6] J.-M. Daveau.Sṕecification syst̀eme et synth̀ese de la com-
munication pour le co-design logiciel/matériel. PhD the-
sis, Th̀ese de doctorat INPG, Laboratoire TIMA, Décembre
1997.

[7] J. Davis II, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu,
X. Liu, L. Muliadi, S. Neuendorffer, J. Tsay, B. Voge, and
Y. Xiong. Heterogeneous concurrent modeling and design
in java. Technical Report Memorandum UCB/ERL M01/12,
Department of Electrical Engineering and Computer Sci-
ence, University of California at Berkeley.

[8] B. Lee and E. A. Lee. Interaction of finite state machines
and concurrency models. Technical report.

[9] G. Svarstad, A. Nicolescu, and A. Jerraya. A model for de-
scribing communications between aggregate objects in the
specification and design of embedded systems. Technical
report.


