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Abstract –Data processing applications are increasingly heterogeneous, mixing different 

technical domains such as telecommunications, digital and analog electronics, signal processing 

algorithms, etc.  These domains have different methods of modeling and design that consider their 

components and relationships in different ways. To mix these different domains, modeling 

languages and platforms generally use a hierarchical approach where the hierarchy of the model 

is coupled to the change of model of computation. Moreover, heterogeneous components cannot 

be used and what happens when data crosses the boundary between two domains depends on the 

modeling environment. 

This paper presents a flat heterogeneous modeling approach that solves these issues by using 

Heterogeneous Interface Components, which gives more control to the designer on the semantics 

of the interactions between models of computation. 
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I. Introduction 

In [1], modeling is defined as a formal representation 

of a given concept, system or subset whereas designing 

implies the implementation of successive models, where 

each one is the refinement of the previous. Hence, the 

first model may be viewed as the formal specification 

and the latest as its implementation. Thus, the goal of 

modeling is the exploration of models for final design 

whereas the goal of design is implementation. So, 

design and modeling are closely interdependent. On an 

abstract level, a model of a system can be regarded as a 

combination of different technical domains that may 

have different modeling and design methods. However, 

these domains do not consider their components and the 

interactions between them in the same manner. As a 

result, in each domain, interactions between components 

are controlled and governed by a specific set of physical 

laws or axioms called “Model of Computation” (MoC). 

A comparative and detailed study of models of 

computation is presented in [2].  

Currently, the modeling and design of complex systems 

naturally uses several MoCs that match diverse 

technical implementations; e.g. a third generation multi-

media cell phone uses several technical domains such as 

algorithms for image and signal processing, software, 

physical interfaces, micro-waves and radio features, etc. 

The setup of such a system may imply the connection of 

subsystems that are not already using the same MoC. 

Such a system is called a “Heterogeneous System”. 

I.1. Heterogeneous Modeling Approaches 

Heterogeneous modeling is simply modeling by 

using several MoCs. Since most systems are 

heterogeneous in nature, heterogeneous modeling 

provides more natural and more complete models. For 

instance, being able to use both state machines and 

Synchronous Data Flows allows the designer to describe 

explicitly the control in a digital signal processing 

model. If we were limited to the SDF MoC, control and 

data processing would have to be coded together and the 

model would be less expressive and much more difficult 

to maintain. In order to mix different MoCs, current 

heterogeneous modeling tools can use either an 

amorphous or a hierarchical approach of heterogeneity. 

• Amorphous Approach: Many modeling and design 

environments support heterogeneous modeling, but they 

generally focus on a fixed set of MoCs that are 

generally continuous and discrete signals for electrical 

engineering or state machines and differential equations 

for hybrid systems. Since they use few MoCs that are 

known beforehand, they can define the union of these 

MoCs. Moreover, the complete knowledge of the 

interactions between these MoCs allows computing the 

behavior of a heterogeneous model. This approach is 

called the “Amorphous Approach”. A digital to 

analogical signal converter with digital inputs and 

analog output is an example of such systems. SIMULINK 

and VHDL-AMS are modeling and design environments 

that rely on this approach. 

• Heterogeneous Approach: Modeling and design 

tools that support an open set of MoCs cannot build the 
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union of the MoCs because they are too numerous and 

not known beforehand. These tools require that each 

component obeys only one MoC. Since two connected 

components obey the same MoC, all interconnected 

components must obey the same MoC. However, the 

hierarchical abstraction makes it possible to model a 

contained component using a MoC which is different 

from the one used for its container. Therefore, changes 

of MoC can only occur at the boundary of a component: 

this leads to the “hierarchical heterogeneous modeling” 

paradigm used by several modeling and design 

environments such as EL GRECO [3], PTOLEMY II [1], 

ROSETTA [4] etc. This hierarchical approach is 

obviously an efficient way of managing system 

complexity [5], [6], [7], [8]. This complexity can come 

from the structure or behavior of the system [3] what 

leads to structural and behavioral hierarchy exposed in 

[9], [10]. Structural hierarchy is used to identify self-

contained subsystems whereas behavioral hierarchy is a 

way of considering a complex process as the result of 

sequential or concurrent single processes. In hierarchy, 

block diagrams support abstraction and refinement. 

Abstraction allows a block diagram to be compressed 

into a single block; refinement allows a block to be 

expanded into a block diagram [11]. Therefore, the 

fundamental question is not this hierarchical 

relationship between blocks; it is rather the impact of 

the coupling between changes of MoC and hierarchy on 

the modeling, design and maintainability of 

applications. This coupling reduces reusability, corrupts 

modularity and makes the maintainability of systems 

complex. We think that the hierarchy in a heterogeneous 

model should not depend on modeling tools. It should 

rather represent the compositional structure of a system 

according to its functional decomposability. 

In this paper, the heterogeneity we are talking about 

is not from hardware and software partitioning such as 

defined in [12]. It is at the modeling and design levels. 

It is only related to the rules that govern the interactions 

between the components of a model of a system. An 

implementation of the system may use a single set of 

rules onto which different modeling approaches would 

be mapped. On the contrary, two systems modeled by 

using the same model may be implemented with 

different rules. For instance, the continuous time model 

may be used to model both a mechanical and an 

electrical system as shown in Fig. 1. 
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Fig. 1. Two different systems modeled by the same equations. 

II. Hierarchical approach issues 

Hierarchy manages the complexity of a system by 

hiding non pertinent internal details at a given level of 

modeling. When you look inside a component, you may 

see either a low level description of the component 

behavior when the component is atomic or primitive or 

a model of this component in the same modeling 

environment when it is composite. In both cases, the 

interface of the component hides the internal details of 

its behavior and insulates these internal details from the 

outside environment in which the component is used. So 

the inner and outer MoCs can be different. It is still 

necessary to define how those MoCs interact and how 

data is transformed when crossing a boundary [9]. 

Currently, most modeling tools use the hierarchical 

approach. But, this approach has some drawbacks 

leading to some issues: (1) model hierarchy is coupled 

with the changes of MoC and may not reflect the 

effective structure of the system, (2) components that 

have inputs or outputs that obey different MoCs cannot 

be used in a model, and (3) what happens when data 

crosses the boundary between two domains depends on 

the modeling environment.  

II.1. Change of MoC implies hierarchy  

Since changes of MoC may occur only when we 

change the level in the hierarchy of the model, ad hoc 

constructions arise at the boundary between two MoCs. 

This issue can be solved by either preserving or 

changing the semantic properties across MoCs. 

According to the preservation of semantic properties 

across MoCs, only terminals that obey the same MoC 

can be connected, but a component may obey several 

MoCs. This way preserves the semantic properties along 

connections between terminals. Since components can 

obey several MoCs, we can use a third component 

dedicated to the change of semantics between two 

heterogeneous components in the same hierarchical 

level as shown in Fig. 2. Then, the heterogeneous 

behavior of the system can occur inside those 

components as part of their behavior and also as part of 

the behavior of the system. 

 
 

Fig. 2. Component obeys several MoCs. 

As for the change of semantic properties across 

MoCs, here components obey only one MoC, but we 

can make connections between terminals across MoCs 

as shown in Fig. 3. To achieve this, the change of 
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semantic properties mechanism between MoCs must be 

implemented in either the core or the ends of the 

connection. But, implementing the change of semantic 

properties mechanism between MoCs in the core of 

connections requires this connection to become active, 

to provide both the conversion of communication 

protocol and data formatting mechanisms. The 

challenge is that to be able to do so from one MoC to 

another, the connection must be able to fulfill the three 

conditions given in [13] : (1) to translate the common 

semantic properties, (2) to ignore the semantic 

properties in the first MoC that are not present in the 

target MoC, (3) to create the semantic properties in the 

target MoC that are not present in the first MoC 

 
 

Fig. 3. Component obeys only one MoC. 

Likewise, implementing the change of semantic 

properties mechanism between MoCs at the end of the 

connection requires this terminal to become active.  

 
 

Fig. 4. The use of RPC. 

To achieve this, some approaches use the Remote 

Procedure Call (RPC) mechanism where a component 

can call a communication primitive of a connection by 

reading from or writing to the interface port. As shown 

in Fig. 4, the component M1 chooses the 

communication protocol in the protocol library. Since it 

can have several implementations, the synthesis process 

chooses the appropriate protocol to the MoC used by the 

components M1 and M2 and provides the suitable 

primitive for the connection. In object-oriented 

philosophy, this concept of protocol library is often 

replaced by the power of the polymorphism technique. 

In PTOLEMY II for instance, this concept is replaced by 

the dual concept of polymorphism and hierarchical 

abstraction but on different hierarchical levels. 

II.2. Banning of components using several MoCs 

The second issue is the banning of components that 

have terminals which obey different MoCs in the same 

hierarchical level. For instance, an analog to digital 

converter could be modeled in a continuous time 

domain, the digital outputs being modeled with 

continuous signals with sharp changes. If such a model 

is close to the reality, it is not at the right abstraction 

level when one wants to consider the outputs as discrete 

sequences of values. On the contrary, the analogical to 

digital converter could be modeled using a discrete 

domain where the continuous inputs would be 

considered as sequences of discrete samples, turning the 

device into a resampler or a no-op. To solve this 

problem, a Heterogeneous Interface Component must be 

used. 

II.3. Implicit transformation between MoCs 

The third issue hides the transformations that occur at 

the boundary of two domains inside the “edge of the 

components”. These transformations depend on the 

modeling tool and are therefore not explicitly stated in 

the model of a system. And the designer has neither a 

clear understanding nor the complete control of what 

happens when data crosses the boundary between two 

domains of the system. To solve this problem, two 

approaches may be used: (1) the first approach 

advocates to allow the designer to edit the edge of the 

components to specify how data is transformed when it 

goes through it. (2) The second approach advocates 

moving these transformations from the edge to the core 

of the components. This makes the component internal 

specification depend on the domain in which it is used, 

what impairs modularity and reusability. 

II.4. Example and Goal 

Consider the example shown in Fig. 5 of a signal 

rectifier to illustrate the issues of the hierarchical 

heterogeneous models. The top level uses flows of data 

samples, and the behavior of the detector is modeled 

using discrete events. When the flow of samples enters 

the detector, it is converted to a sequence of valued 

events. When an event is produced at the output, its 

value is used to build a data sample in the outer domain. 

This is an example of what may happen at the boundary 

of a component, and the important point is that these 

transformations depend on the modeling tool and are not 

specified in the model of the system. Since the data flow 

MoC which is used for that detector requires that a 

sample of data be produced on the output each time a 

sample is consumed on the input, the discrete event 
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behavior of the detector must respect this condition. So 

even if the input signal does not change its sign and no 

event has to be produced, the detector must produce 

something on its output to obey the outer semantics. 

 
 

Fig. 5. Example of a hierarchical system. 

Here, we have put a sampler that uses the value of the 

last emitted event to produce an output each time an 

input sample is consumed. We have to put this sampler 

in the internal model of the detector because of the 

external semantics. So the implementation of the 

detector depends on the context in which it is used, what 

impairs modularity and reuse. 

The goal of this paper is not to banish the hierarchy, 

but to propose a new heterogeneous approach called 

”Flat heterogeneous Modeling” built on hierarchical 

heterogeneous modeling. Its first goal is to dissociate 

the changes of MoC from the hierarchy by using 

components that have heterogeneous inputs or outputs; 

from where arises the use of several MoCs at the same 

hierarchical level. Secondly, to allow the explicit 

specification of the heterogeneous behavior in the HICs, 

from where comes the explicit specification of what 

happens at the boundary between different MoCs by the 

system designer. 

III. Flat heterogeneous approach features 

To model the flat heterogeneous approach, we 

choose actor-oriented methodology [14], [15,] [16], 

[17]. We also choose to allow the connection only of 

terminals that obey the same MoC (as seen in 

section II.1) because its preserves the semantic 

properties across the connection. Additionally it has an 

advantage to support Heterogeneous Interface 

Components (HICs) that include the change of 

semantics between heterogeneous MoCs as a part of 

their behavior. The HICs naturally appear in the models; 

therefore, they raise the question of making them obey 

several MoCs knowing in advance neither the MoCs nor 

their number. Since a HIC is heterogeneous, it has ports 

that obey different MoCs. When it interprets an input, it 

translates its meaning in the associated MoC into its 

internal semantic. When it produces an output, it 

translates the data from its input and its internal state 

into the semantics of this output according to its MoC. 

So, the behavior of a HIC can be decomposed into as 

many secondary behaviors as there are MoCs in its 

interface, and these secondary behaviors are coupled by 

the internal semantic of the HIC. As a result, the 

behavior of the HIC according to a MoC can influence 

its behavior according to another MoC. Each one of its 

secondary behaviors is viewed as “a bridge” between a 

MoC and its total behavior. Thus, the specification of 

the behavior of a HIC leads to an internal representation 

of the semantics of the inputs according to their 

respective MoCs, and the translation of this internal 

representation into outputs. Therefore, a HIC can use as 

many domains as necessary. HICs require a 

heterogeneous model of execution for the interpretation 

of the flat model in the hierarchical approach. 

III.1. First attempt 

When considering a HIC having a behavior at the 

boundary of only two heterogeneous MoCs, we see that 

it must be represented in both MoCs. Thus, the 

heterogeneous execution model divides the system at 

the border of both MoCs and creates two subsystems : 

!1 and !2 controlled by their MoCs. Unfortunately this 

configuration is physically impossible because a 

component cannot be simultaneously in !1 and !2.  

III.2. Flat approach by hierarchical abstraction 

Because of this physical constraint, we have 

intuitively outsourced the HIC from !1 and !2 and used 

hierarchical abstraction. That gives to !1 and !2 the 

respective ports !1
Out

 and !2
In

. Inside each subsystem, 

these ports are connected to the homogeneous 

components, and outside, they are connected to the ports 

Hic
In

 and Hic
Out

 of HIC. This configuration is obviously 

realizable, and has been implemented. Unfortunately, it 

is hardly realistic because it makes the heterogeneous 

execution model depend on the MoCs used by !1 and 

!2. Also, it is not compatible with an open set of MoCs. 

III.3. Flat approach by non-hierarchical abstraction 

Let us replace this previous concept by that of “non-

Hierarchical Abstraction” [9] [8] in which the interface 

of a subsystem is deprived of communication ports. So 

there is no communication channel connecting the 

subsystems to each other. This approach relies on the 

following: 

• Projection of HIC: For each MoC used by a HIC, 

we create a component that represents this HIC in a 

subsystem that obeys the MoC. We call it the 

“Projection” of the HIC onto the subsystem as shown in 

Fig. 6. This component is homogeneous because it has 

only the ports of the HIC which obey the local MoC, 

other ports being masked during the projection process. 

This concept introduces two types of particular 
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channels: Heterogeneous and Homogeneous Abstract 

channels 

• Heterogeneous Abstract channels are channels 

between the projections of a HIC on various 

subsystems. Such channels cannot be represented by 

direct connections because the communication occurs 

inside the HIC. As shown on Fig. 7, after HIC 

projection, the original channel between the actors A1 

and A2 disappears since it cannot be handled by the 

homogeneous MoC. It appears as an abstract 

heterogeneous channel between A1 and A2 which 

contains both the channel c1, the projection HicTx, the 

HIC, the projection HicRx and the channel c2. We call it 

an “Abstract heterogeneous channel”. Such a channel 

obeys the rules of the heterogeneous domain. 

 
 

Fig. 6 a HIC projected into two domains. 

• Homogeneous Abstract channels: let us consider 

the example on Fig. 7. Because of the non-hierarchical 

abstraction, a channel that connects two ports of A1 and 

A3 that do not belong to the same subsystem but use the 

same MoC is implemented by using an abstract channel. 

This channel includes the channels from A1 to A3 and 

two components: the “Relays Tx” transmitter which 

transmits data to a corresponding “Relays Rx” receiver. 

We call such a channel a “Homogeneous Abstract 

channel”. 

 
 

Fig. 7. Homogeneous Abstract Channel. 

Data available on the input of Tx are also available on 

the output of Rx, and the scheduler of the subsystem 

will make sure that the behavior of !1 is computed 

before the behavior of !3 so that Tx can transmit the 

value to Rx before the output of Rx is used. 

IV. Modeling of a HIC 

IV.1. Structure of a HIC before the system partitioning 

Let’s take a HIC having only one input and one 

output. It has a set of variables noted HIC.X = {HicIn, 

HicOut, hicParameter, hicState} where HicIn is the 

input port from which the HIC reads data, HicOut is the 

output port by which the it sends data, hicParameter and 

hicState are the parameters and current state of the HIC. 

Operations of the HIC before system partitioning  

A HIC has heterogeneous inputs and outputs 

allowing it to communicate with two or several 

heterogeneous components. In addition, it must be able 

to provide a heterogeneous behavior at the borders of 

both MoCs that it uses. Then, a HIC has a set of data 

flow operations and a set of control operations. 

• Data flow operations of a HIC: the behavior and 

communication of a HIC are determined by two sets :  

Hic.Comp and Hic.Comm respectively, set of its 

computational operations and set of its communication 

operations. Hic.Comp determines the way a HIC 

computes its behavior at the border of adjacent MoCs 

and Hic.Comm determines the way it sends the data 

towards a consumer actor. Hic.Comm=Hic.Read ! 

Hic.Write={existData(),read(),isFull(), 

write()} and Hic.Comp={computeBehavior()}. 

Hic.Comp enables it to compute its heterogeneous 

behavior. So, this is where the designer would specify 

the heterogeneous behavior of the system (interpretation 

of data when passing from a MoC towards another).  

• Control flow operations : A HIC is controlled by 

Hic.Ctrl and Hic.Clbk respectively call back operations 

sent to him by the MoC and recall operations that it 

sends to the MoC. Hic.Ctrl = {initialization(), 

preCondition(),trigger(),postCondition()} 

and Hic.Clbk = {finish()}, operation by which it 

notifies the end of its activities to the MoC.  

• Set of execution operation of a HIC : Hic.Oper is 

the union of all the operations that a HIC can perform: 

Hic.Oper = Hic.Comm " Hic.Comp " Hic.Clbk = 

{existData(),read(),isFull(),write(), 

computeBehavior(),finish()}. We give a 

summary of HIC operations in table 1 below. 
TABLE I 

HIC OPERATIONS BEFORE PARTITIONING 

 

 

Since a HIC is projected in various subsystems, it is 

fair to wonder about the way it will share its internal 

variables and operations with its projections.  



 

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj 

 

 

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved                      International Review on Computers and Software, Vol. xx, n. x 

 

IV.2. Structural partitioning of HIC 

During the partitioning process, the projection of a 

HIC is simply the same HIC placed in a given 

subsystem. However, since this projection has removed 

its ports that do not obey the MoC of the subsystem 

onto it is projected, it looks like a homogeneous actor of 

this subsystem. The global behavior of the HIC is at the 

border of several MoCs, and can be performed only by a 

component not belonging to any subsystem. This is why 

the internal variables will be managed by the HIC itself. 

After system partitioning, a projection is connected to a 

channel via its port as shown on Fig. 8. This is why, all 

the interface variables of the projections will be shared 

with the interface variables of the HIC that is the source 

of this projection. 

IV.3. Operational partitioning of a HIC 

The partitioning is made according to communication 

and behavior. Thus, some operations are performed by 

the projections of the HIC and others by the HIC itself. 

In the same way, from the point of view of control, the 

partitioning is elaborated in such a way that the 

heterogeneous execution model performs some controls 

and delegates execution to the regular MoCs. 

• Communication operations : According to the 

resulting structure of the HIC, the projections are 

connected to the different communication channels in 

the subsystems. As for the communication operations, 

existData() and read() will be performed by the 

input ports of HIC that is shared with the corresponding 

ports of its projections. isFull() and write() will 

be performed by the output ports of HIC that is shared 

with the corresponding ports of its projections. 

 

 
 

Fig. 8. Structure and operations partitioning of HIC. 

 

Behavior Computational Operation: Because of the 

heterogeneity, the behavior computation operation is 

assigned to a HIC and computeBehavior()is invoked 

by its trigger() which is itself invoked by the 

trigger() of its projections. The execution of a HIC 

is included in the execution of its projection. 

• Control operations: The heterogeneous execution 

model is relieved of data transfer between two 

heterogeneous actors. It is not informed of the different 

MoCs used by the various subsystems that it controls. 

Thus, it has to delegate all the local control of the 

subsystems to their respective local MoC. Thus, the 

control of each projection is exclusively delegated to the 

MoC that governs its subsystem. Its MoC ensures its 

triggering and detects the end of its activities.  

• A projection is controlled by its MoC by the 

operations initialize(), preCondition(), 

postCondition(), trigger(). It notifies the end 

of its activities to its MoC by finish(). Its call-backs 

getModEx() and requestBehaviorComputing() 

request respectively the nature of its MoC and the 

triggering of its original HIC by the flat heterogeneous 

execution model in order to compute its behavior.  

• A HIC is directly controlled by the flat 

heterogeneous execution model by its initialize(), 

preCondition(),trigger(),postCondition(). 

By getModEx(), it will request the nature of its MoC 

and it notifies the heterogeneous execution model of the 

end of its activities by finish(). 

IV.4. Specification of the behavior of a HIC 

When a projection of a HIC onto a subsystem is 

activated by the local MoC that governs this subsystem, 

a HIC must process inputs, produce outputs or update its 

internal state. The scheduling algorithm of the 

heterogeneous domain ensures that all the projections of 

a HIC that take input data are activated before any 

projection that must produce outputs is activated. 

However, when we design a HIC, we do not know in 

which order its inputs will be available because we do 

not know how it will be projected on the domains it 

uses. It is not possible to specify the behavior of the 

HIC for each of its domains, because it may happen that 

several terminals that use the same MoC be projected 

onto different subsystems. Therefore, the only solution 

to specify the behavior of a HIC is to specify how its 

state is updated for each possible set of known inputs, 

and to compute its outputs from the known inputs and 

the current state. This makes programming HICs less 

simple than regular components because the code must 

check which inputs are known before processing them. 

V. Modeling of Flat Heterogeneous 

Execution Model 

The simulation of such a flat heterogeneous system 

requires a heterogeneous execution model that is able to 

interpret the flat model in the hierarchical approach. 

This execution model ensures the management of HICs, 

the partitioning of the system into homogeneous 

subsystems, the delegation of the computation of the 

behavior of the subsystems to their MoC, the static 

scheduling of the subsystems and the coordination of 

the communications between subsystems. We designed 
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this execution model to operate into three phases:  

partitioning of the system into subsystems, scheduling 

of the subsystems and execution. 

V.1. Partitioning the system 

During the initialization phase, the execution model 

divides the system at the border of the MoCs, and 

creates homogenous subsystems. The HICs are 

projected onto each subsystem to which some of their 

ports belong, and the other actors are transferred to their 

associated subsystems. Then the execution model copies 

the connections from the original system to the 

subsystems and generates virtual dependencies between 

the projections of a HIC on the same subsystems. 

The partitioning algorithm minimizes the use of 

abstract homogeneous channels by first performing a 

topological sort on the actors. Then, for each actor, in an 

order which is compatible with the topological sort, it 

looks for a subsystem that uses the MoC of the actor. If 

such a subsystem exists, it puts the actor there if the 

dependencies allow it; else a new subsystem is created 

to host the actor. The condition on the dependencies 

must be respected so that the subsystems can be 

scheduled. To put an actor Ai in a subsystem Sj, the 

following conditions must hold: 

• Ai must use the same MoC as Sj 

• There is no path from Ai to any actor of Sj that goes 

through a HIC. 

These conditions ensure that there won’t be cross 

dependencies between subsystems. For instance, on Fig. 

9, if we put Ad1 and Cd1 in the same !1 subsystem (they 

both obey the MoC d1), and Bd2 and Dd2 in !2 

subsystem (they both obey the MoC d2), we cannot 

schedule the two subsystems because the projection of 

the HIC in !1 must be activated after Bd2 which is in 

!2, and the projection of the HIC in !2 must be 

activated after Ad1 which is in !1, so there is no possible 

schedule of !1 and !2. In this case, the algorithm will 

build four subsystems, each one containing an actor and 

a projection of the HIC. 

 
 

Fig. 9. !1 and !2 cannot be scheduled. 

 

The above conditions may hold for more than one 

subsystem for a given actor, in which case we choose to 

put the actor in the subsystem that already contains a 

projection of the HIC which belongs to the same 

segment as the actor if any, or we will put it in the most 

recently created compatible subsystem. 

V.2. Scheduling of the subsystems 

Our flat heterogeneous execution model relies on the 

schedulers of the subsystem MoCs to schedule the 

actors inside, so that it does not depend on the semantics 

of their MoC. The precedence between subsystems is 

induced by the abstract homogenous channels (between 

actor relays) and the abstract heterogeneous channels 

(between HIC projections). A subsystem !1 precedes 

another subsystem !2, and we note !1 < !2 if either !1 

contains an output relay and !2 contains the matching 

input relay or !1 contains a projection of a HIC which 

has inputs and !2 contains a projection of the same HIC 

which has outputs. The scheduling of the subsystems 

should be done according to the precedence induced by 

the HICs and the relays used to preserve homogenous 

communication channels across subsystems. However, 

because of the reasons that lead to the creation of relays, 

the precedence induced by relays on subsystems is 

always also induced by the HICs. Therefore, it is 

sufficient to take only the precedence induced by the 

HICs into account for scheduling the subsystems. After 

partitioning the system, the heterogeneous execution 

model builds a skeleton of the partitioned system that 

contains only the projections of the HICs and their 

dependencies. A topological sort of this skeleton is then 

used to determine the precedence relation on 

subsystems, and any order which is compatible with this 

relation of precedence is a possible scheduling of the 

subsystems. 

V.3. Example of partitioning and scheduling 

Consider the flat heterogeneous system of Fig. 10. 

 
Fig. 10. Example of a flat heterogeneous system. 

 

The partitioning of this example is shown on Fig. 11. 

(1) A cannot be put in the same subsystem as any other 

actor since actors that are on the same side of H1 do not 

use the same MoC, and actors which use the same MoC 

are reached by crossing a HIC, so A will be alone with 

the projection of H1 in its subsystem. (2) B, C and E use 
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the MoC D2 and will be put in the same subsystem. 

However, D and H cannot be grouped with them 

because there is a path from C to D through H1, and 

there is a path from C to H through H1 and H2. (3) F 

can be put with D and E because they use the same 

MoC and do not communicate through a HIC. G is the 

only actor that uses D1 to the right of H1, so it will be in 

its own subsystem. (4) Since E and H are connected but 

are not placed in the same subsystem, there will be two 

relay actors Tx and Rx that handle communications 

along this abstract homogenous channel. 

 

 
 

Fig. 11. Partitioning of the system. 

 

The skeleton of this partitioning is shown in Fig. 12 

and yields the following precedence relations: 

!1 < !3                !2 < !3                !4 < !4 

!1 < !4                !2 < !4                !3 < !5 

 
 

Fig. 12. Skeleton of the example system. 

 

That gives the four following schedules: 

    !1  !2  !3  !4  !5                   !1  !2  !3  !5  !4 

!2  !1  !3  !4  !5                   !2  !1  !3  !5  !4 

V.4. Execution of a heterogeneous iteration 

Scheduling makes it possible to activate the 

subsystems according to a well-defined sequencing. 

When this sequencing executes a complete cycle, we 

call it an “iteration” of the system. Since we forced on 

the heterogeneous execution model not to know the 

MoCs used by its subsystems, the interactions between 

the execution model and the subsystems will only be the 

activations and calls-back.  

V.5.  Execution in "1 

The execution in !1 is shown on the Fig. 13. Suppose 

that !1 receives an initial triggering coming from the 

heterogeneous execution model M. 

(1) M triggers !1; (2) !1 performs A1; (3) A1 checks the 

availability of HicTx; (4) A1 writes data to channel C1; 

(5) A1 notifies !1 of the end of its activities; (6) !1 

triggers HicTx; (7) HicTx requests the triggering of the 

original HIC by M ; (8) M triggers the HIC; (9) the HIC 

computes its behavior; (9-1) the HIC checks data 

available on C1; (9-2) the HIC reads data from C1; (10) 

the HIC notifies M of the end of its activities; (11) M 

returns; (12) HicTx notifies !1 of the end of its 

activities. The same execution process happens in !2. 

 

 
 

Fig. 13. Execution process in !1. 

VI. Integration and simulation in Ptolemy II 

VI.1. Integration 

This approach has been integrated in PTOLEMY II [1]. 

This hasn’t required any change to the Ptolemy kernel. 

Its implementation is just another Ptolemy II domain. A 

flat heterogeneous model is a composite actor controlled 

by a heterogeneous Director called “FHDirector” and 

using one or several HICs that extends the HicActor 

class which inherits from the class AtomicActor; any 

class of HIC must extend it. The methods 

initialize() and fire() must be overwritten to 
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allow the computation of the heterogeneous behavior. 

Depending on the specification of a HIC, the methods 

prefire() and postfire() could also be 

overwritten to implement some specific constraints. The 

class diagram of HicActor is shown on Fig. 14 

 

 
 

Fig. 14. UML Class diagram of HicActor. 

 

The class FHDirector which extends the class 

Director has also been defined. The methods 

preinitialize(),initialize() and fire() are 

overwritten to make it possible for FHDirector to deal 

with the additional tasks of subsystems creation, HIC 

projection, actors motion their associated subsystems, 

ports management in subsystems and scheduling of the 

subsystems. 

 

 
 

Fig. 15. UML Class diagram of FHDirector. 

 

The FHDirector execution phase is performed during 

its fire()operation. Partitioning and scheduling 

phases are respectively executed in preinitialize() 

and initialize(). preinitilalize() being 

where the system creates receivers and validates 

attributes and ports, receivers for consuming actors 

(including projections) will be supplied by the regular 

Directors after partitioning. This occurs when 

FHDirector invokes preinitialize() in its super 

class witch invokes the same method on the subsystems, 

which also invokes that operation in their respective 

directors to create receivers on projections, validate 

their attributes and ports. During this operation, 

FHDirector invokes its divideSystem() to divide the 

system at the border of MoCs. Then, 

computeDomainsSchedule() is called to 

schedule the subsystems before the execution phase. In 

the iteration phase, if the subsystem is ready to be 

performed, FHDirector invokes its fire() method in 

which the projections request the activation of their 

HICs from FHDirector. 

VI.2. Simulation in Ptolemy II 

Let’s model a simple system that uses three MoCs: 

SDF, DE and DT at the same level of hierarchy.  

 

 
 

Fig. 16. Simulated system 
 

The system was built by assembling actors using the 

Java API of PTOLEMY II. Fig. 17 shows the result of the 

simulation in PTOLEMY II. The upper plot is the original 

sinusoid signal, the middle one is the amplified signal 

and the lowest is the events that drive the rectification. 

 

 
 

Fig. 17. Result of the simulation 
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VII. Conclusion 

We presented a flat heterogeneous modeling approach 

that allows more natural modeling of heterogeneous 

interface components and gives more control on the 

semantics of the interactions between MoCs. This 

approach offers several advantages since the use of 

components that have heterogeneous inputs or outputs 

allows the use of several MoCs at the same hierarchical 

level of a model, and the explicit specification of the 

heterogeneous behavior by the designer in the HICs 

allows him to specify what happens at the boundary 

between different MoCs. Nevertheless, this approach 

does not support dependency loops between 

heterogeneous subsystems. However, if a loop is local 

to a subsystem and if the corresponding model of 

computation supports loops, the loop is accepted and its 

semantics will be given by the domain of the subsystem. 
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