

International Review on Computers and Software (I.RE.CO.S.), Vol. xx, n. x

Manuscript received January 2007, revised February 2007, accepted March 2007 Copyright © 2007 Praise Worthy Prize - All rights reserved

An Approach of Flat Heterogeneous Modeling based on

Heterogeneous Interface Components

Aimé Mokhoo Mbobi
1
, Frédéric Boulanger

2
, Mohamed Feredj

3

Abstract –Data processing applications are increasingly heterogeneous, mixing different

technical domains such as telecommunications, digital and analog electronics, signal processing

algorithms, etc. These domains have different methods of modeling and design that consider their

components and relationships in different ways. To mix these different domains, modeling

languages and platforms generally use a hierarchical approach where the hierarchy of the model

is coupled to the change of model of computation. Moreover, heterogeneous components cannot

be used and what happens when data crosses the boundary between two domains depends on the

modeling environment.

This paper presents a flat heterogeneous modeling approach that solves these issues by using

Heterogeneous Interface Components, which gives more control to the designer on the semantics

of the interactions between models of computation.

Keywords: Heterogeneity, Embedded Systems, Modeling, Design, Model of Computation

I. Introduction

In [1], modeling is defined as a formal representation

of a given concept, system or subset whereas designing

implies the implementation of successive models, where

each one is the refinement of the previous. Hence, the

first model may be viewed as the formal specification

and the latest as its implementation. Thus, the goal of

modeling is the exploration of models for final design

whereas the goal of design is implementation. So,

design and modeling are closely interdependent. On an

abstract level, a model of a system can be regarded as a

combination of different technical domains that may

have different modeling and design methods. However,

these domains do not consider their components and the

interactions between them in the same manner. As a

result, in each domain, interactions between components

are controlled and governed by a specific set of physical

laws or axioms called “Model of Computation” (MoC).

A comparative and detailed study of models of

computation is presented in [2].

Currently, the modeling and design of complex systems

naturally uses several MoCs that match diverse

technical implementations; e.g. a third generation multi-

media cell phone uses several technical domains such as

algorithms for image and signal processing, software,

physical interfaces, micro-waves and radio features, etc.

The setup of such a system may imply the connection of

subsystems that are not already using the same MoC.

Such a system is called a “Heterogeneous System”.

I.1. Heterogeneous Modeling Approaches

Heterogeneous modeling is simply modeling by

using several MoCs. Since most systems are

heterogeneous in nature, heterogeneous modeling

provides more natural and more complete models. For

instance, being able to use both state machines and

Synchronous Data Flows allows the designer to describe

explicitly the control in a digital signal processing

model. If we were limited to the SDF MoC, control and

data processing would have to be coded together and the

model would be less expressive and much more difficult

to maintain. In order to mix different MoCs, current

heterogeneous modeling tools can use either an

amorphous or a hierarchical approach of heterogeneity.

• Amorphous Approach: Many modeling and design

environments support heterogeneous modeling, but they

generally focus on a fixed set of MoCs that are

generally continuous and discrete signals for electrical

engineering or state machines and differential equations

for hybrid systems. Since they use few MoCs that are

known beforehand, they can define the union of these

MoCs. Moreover, the complete knowledge of the

interactions between these MoCs allows computing the

behavior of a heterogeneous model. This approach is

called the “Amorphous Approach”. A digital to

analogical signal converter with digital inputs and

analog output is an example of such systems. SIMULINK

and VHDL-AMS are modeling and design environments

that rely on this approach.

• Heterogeneous Approach: Modeling and design

tools that support an open set of MoCs cannot build the

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

union of the MoCs because they are too numerous and

not known beforehand. These tools require that each

component obeys only one MoC. Since two connected

components obey the same MoC, all interconnected

components must obey the same MoC. However, the

hierarchical abstraction makes it possible to model a

contained component using a MoC which is different

from the one used for its container. Therefore, changes

of MoC can only occur at the boundary of a component:

this leads to the “hierarchical heterogeneous modeling”

paradigm used by several modeling and design

environments such as EL GRECO [3], PTOLEMY II [1],

ROSETTA [4] etc. This hierarchical approach is

obviously an efficient way of managing system

complexity [5], [6], [7], [8]. This complexity can come

from the structure or behavior of the system [3] what

leads to structural and behavioral hierarchy exposed in

[9], [10]. Structural hierarchy is used to identify self-

contained subsystems whereas behavioral hierarchy is a

way of considering a complex process as the result of

sequential or concurrent single processes. In hierarchy,

block diagrams support abstraction and refinement.

Abstraction allows a block diagram to be compressed

into a single block; refinement allows a block to be

expanded into a block diagram [11]. Therefore, the

fundamental question is not this hierarchical

relationship between blocks; it is rather the impact of

the coupling between changes of MoC and hierarchy on

the modeling, design and maintainability of

applications. This coupling reduces reusability, corrupts

modularity and makes the maintainability of systems

complex. We think that the hierarchy in a heterogeneous

model should not depend on modeling tools. It should

rather represent the compositional structure of a system

according to its functional decomposability.

In this paper, the heterogeneity we are talking about

is not from hardware and software partitioning such as

defined in [12]. It is at the modeling and design levels.

It is only related to the rules that govern the interactions

between the components of a model of a system. An

implementation of the system may use a single set of

rules onto which different modeling approaches would

be mapped. On the contrary, two systems modeled by

using the same model may be implemented with

different rules. For instance, the continuous time model

may be used to model both a mechanical and an

electrical system as shown in Fig. 1.

(2))(

(1)

2221!12

1

2

121

21
1

2

1

2

Uv
dt

dv
CRCRCR

dt

vd
CRR

kxkx
dt

dx
a

dt

xd
m

=++++

=++

Fig. 1. Two different systems modeled by the same equations.

II. Hierarchical approach issues

Hierarchy manages the complexity of a system by

hiding non pertinent internal details at a given level of

modeling. When you look inside a component, you may

see either a low level description of the component

behavior when the component is atomic or primitive or

a model of this component in the same modeling

environment when it is composite. In both cases, the

interface of the component hides the internal details of

its behavior and insulates these internal details from the

outside environment in which the component is used. So

the inner and outer MoCs can be different. It is still

necessary to define how those MoCs interact and how

data is transformed when crossing a boundary [9].

Currently, most modeling tools use the hierarchical

approach. But, this approach has some drawbacks

leading to some issues: (1) model hierarchy is coupled

with the changes of MoC and may not reflect the

effective structure of the system, (2) components that

have inputs or outputs that obey different MoCs cannot

be used in a model, and (3) what happens when data

crosses the boundary between two domains depends on

the modeling environment.

II.1. Change of MoC implies hierarchy

Since changes of MoC may occur only when we

change the level in the hierarchy of the model, ad hoc

constructions arise at the boundary between two MoCs.

This issue can be solved by either preserving or

changing the semantic properties across MoCs.

According to the preservation of semantic properties

across MoCs, only terminals that obey the same MoC

can be connected, but a component may obey several

MoCs. This way preserves the semantic properties along

connections between terminals. Since components can

obey several MoCs, we can use a third component

dedicated to the change of semantics between two

heterogeneous components in the same hierarchical

level as shown in Fig. 2. Then, the heterogeneous

behavior of the system can occur inside those

components as part of their behavior and also as part of

the behavior of the system.

Fig. 2. Component obeys several MoCs.

As for the change of semantic properties across

MoCs, here components obey only one MoC, but we

can make connections between terminals across MoCs

as shown in Fig. 3. To achieve this, the change of

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

semantic properties mechanism between MoCs must be

implemented in either the core or the ends of the

connection. But, implementing the change of semantic

properties mechanism between MoCs in the core of

connections requires this connection to become active,

to provide both the conversion of communication

protocol and data formatting mechanisms. The

challenge is that to be able to do so from one MoC to

another, the connection must be able to fulfill the three

conditions given in [13] : (1) to translate the common

semantic properties, (2) to ignore the semantic

properties in the first MoC that are not present in the

target MoC, (3) to create the semantic properties in the

target MoC that are not present in the first MoC

Fig. 3. Component obeys only one MoC.

Likewise, implementing the change of semantic

properties mechanism between MoCs at the end of the

connection requires this terminal to become active.

Fig. 4. The use of RPC.

To achieve this, some approaches use the Remote

Procedure Call (RPC) mechanism where a component

can call a communication primitive of a connection by

reading from or writing to the interface port. As shown

in Fig. 4, the component M1 chooses the

communication protocol in the protocol library. Since it

can have several implementations, the synthesis process

chooses the appropriate protocol to the MoC used by the

components M1 and M2 and provides the suitable

primitive for the connection. In object-oriented

philosophy, this concept of protocol library is often

replaced by the power of the polymorphism technique.

In PTOLEMY II for instance, this concept is replaced by

the dual concept of polymorphism and hierarchical

abstraction but on different hierarchical levels.

II.2. Banning of components using several MoCs

The second issue is the banning of components that

have terminals which obey different MoCs in the same

hierarchical level. For instance, an analog to digital

converter could be modeled in a continuous time

domain, the digital outputs being modeled with

continuous signals with sharp changes. If such a model

is close to the reality, it is not at the right abstraction

level when one wants to consider the outputs as discrete

sequences of values. On the contrary, the analogical to

digital converter could be modeled using a discrete

domain where the continuous inputs would be

considered as sequences of discrete samples, turning the

device into a resampler or a no-op. To solve this

problem, a Heterogeneous Interface Component must be

used.

II.3. Implicit transformation between MoCs

The third issue hides the transformations that occur at

the boundary of two domains inside the “edge of the

components”. These transformations depend on the

modeling tool and are therefore not explicitly stated in

the model of a system. And the designer has neither a

clear understanding nor the complete control of what

happens when data crosses the boundary between two

domains of the system. To solve this problem, two

approaches may be used: (1) the first approach

advocates to allow the designer to edit the edge of the

components to specify how data is transformed when it

goes through it. (2) The second approach advocates

moving these transformations from the edge to the core

of the components. This makes the component internal

specification depend on the domain in which it is used,

what impairs modularity and reusability.

II.4. Example and Goal

Consider the example shown in Fig. 5 of a signal

rectifier to illustrate the issues of the hierarchical

heterogeneous models. The top level uses flows of data

samples, and the behavior of the detector is modeled

using discrete events. When the flow of samples enters

the detector, it is converted to a sequence of valued

events. When an event is produced at the output, its

value is used to build a data sample in the outer domain.

This is an example of what may happen at the boundary

of a component, and the important point is that these

transformations depend on the modeling tool and are not

specified in the model of the system. Since the data flow

MoC which is used for that detector requires that a

sample of data be produced on the output each time a

sample is consumed on the input, the discrete event

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

behavior of the detector must respect this condition. So

even if the input signal does not change its sign and no

event has to be produced, the detector must produce

something on its output to obey the outer semantics.

Fig. 5. Example of a hierarchical system.

Here, we have put a sampler that uses the value of the

last emitted event to produce an output each time an

input sample is consumed. We have to put this sampler

in the internal model of the detector because of the

external semantics. So the implementation of the

detector depends on the context in which it is used, what

impairs modularity and reuse.

The goal of this paper is not to banish the hierarchy,

but to propose a new heterogeneous approach called

”Flat heterogeneous Modeling” built on hierarchical

heterogeneous modeling. Its first goal is to dissociate

the changes of MoC from the hierarchy by using

components that have heterogeneous inputs or outputs;

from where arises the use of several MoCs at the same

hierarchical level. Secondly, to allow the explicit

specification of the heterogeneous behavior in the HICs,

from where comes the explicit specification of what

happens at the boundary between different MoCs by the

system designer.

III. Flat heterogeneous approach features

To model the flat heterogeneous approach, we

choose actor-oriented methodology [14], [15,] [16],

[17]. We also choose to allow the connection only of

terminals that obey the same MoC (as seen in

section II.1) because its preserves the semantic

properties across the connection. Additionally it has an

advantage to support Heterogeneous Interface

Components (HICs) that include the change of

semantics between heterogeneous MoCs as a part of

their behavior. The HICs naturally appear in the models;

therefore, they raise the question of making them obey

several MoCs knowing in advance neither the MoCs nor

their number. Since a HIC is heterogeneous, it has ports

that obey different MoCs. When it interprets an input, it

translates its meaning in the associated MoC into its

internal semantic. When it produces an output, it

translates the data from its input and its internal state

into the semantics of this output according to its MoC.

So, the behavior of a HIC can be decomposed into as

many secondary behaviors as there are MoCs in its

interface, and these secondary behaviors are coupled by

the internal semantic of the HIC. As a result, the

behavior of the HIC according to a MoC can influence

its behavior according to another MoC. Each one of its

secondary behaviors is viewed as “a bridge” between a

MoC and its total behavior. Thus, the specification of

the behavior of a HIC leads to an internal representation

of the semantics of the inputs according to their

respective MoCs, and the translation of this internal

representation into outputs. Therefore, a HIC can use as

many domains as necessary. HICs require a

heterogeneous model of execution for the interpretation

of the flat model in the hierarchical approach.

III.1. First attempt

When considering a HIC having a behavior at the

boundary of only two heterogeneous MoCs, we see that

it must be represented in both MoCs. Thus, the

heterogeneous execution model divides the system at

the border of both MoCs and creates two subsystems :

!1 and !2 controlled by their MoCs. Unfortunately this

configuration is physically impossible because a

component cannot be simultaneously in !1 and !2.

III.2. Flat approach by hierarchical abstraction

Because of this physical constraint, we have

intuitively outsourced the HIC from !1 and !2 and used

hierarchical abstraction. That gives to !1 and !2 the

respective ports !1
Out

 and !2
In

. Inside each subsystem,

these ports are connected to the homogeneous

components, and outside, they are connected to the ports

Hic
In

 and Hic
Out

 of HIC. This configuration is obviously

realizable, and has been implemented. Unfortunately, it

is hardly realistic because it makes the heterogeneous

execution model depend on the MoCs used by !1 and

!2. Also, it is not compatible with an open set of MoCs.

III.3. Flat approach by non-hierarchical abstraction

Let us replace this previous concept by that of “non-

Hierarchical Abstraction” [9] [8] in which the interface

of a subsystem is deprived of communication ports. So

there is no communication channel connecting the

subsystems to each other. This approach relies on the

following:

• Projection of HIC: For each MoC used by a HIC,

we create a component that represents this HIC in a

subsystem that obeys the MoC. We call it the

“Projection” of the HIC onto the subsystem as shown in

Fig. 6. This component is homogeneous because it has

only the ports of the HIC which obey the local MoC,

other ports being masked during the projection process.

This concept introduces two types of particular

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

channels: Heterogeneous and Homogeneous Abstract

channels

• Heterogeneous Abstract channels are channels

between the projections of a HIC on various

subsystems. Such channels cannot be represented by

direct connections because the communication occurs

inside the HIC. As shown on Fig. 7, after HIC

projection, the original channel between the actors A1

and A2 disappears since it cannot be handled by the

homogeneous MoC. It appears as an abstract

heterogeneous channel between A1 and A2 which

contains both the channel c1, the projection HicTx, the

HIC, the projection HicRx and the channel c2. We call it

an “Abstract heterogeneous channel”. Such a channel

obeys the rules of the heterogeneous domain.

Fig. 6 a HIC projected into two domains.

• Homogeneous Abstract channels: let us consider

the example on Fig. 7. Because of the non-hierarchical

abstraction, a channel that connects two ports of A1 and

A3 that do not belong to the same subsystem but use the

same MoC is implemented by using an abstract channel.

This channel includes the channels from A1 to A3 and

two components: the “Relays Tx” transmitter which

transmits data to a corresponding “Relays Rx” receiver.

We call such a channel a “Homogeneous Abstract

channel”.

Fig. 7. Homogeneous Abstract Channel.

Data available on the input of Tx are also available on

the output of Rx, and the scheduler of the subsystem

will make sure that the behavior of !1 is computed

before the behavior of !3 so that Tx can transmit the

value to Rx before the output of Rx is used.

IV. Modeling of a HIC

IV.1. Structure of a HIC before the system partitioning

Let’s take a HIC having only one input and one

output. It has a set of variables noted HIC.X = {HicIn,

HicOut, hicParameter, hicState} where HicIn is the

input port from which the HIC reads data, HicOut is the

output port by which the it sends data, hicParameter and

hicState are the parameters and current state of the HIC.

Operations of the HIC before system partitioning

A HIC has heterogeneous inputs and outputs

allowing it to communicate with two or several

heterogeneous components. In addition, it must be able

to provide a heterogeneous behavior at the borders of

both MoCs that it uses. Then, a HIC has a set of data

flow operations and a set of control operations.

• Data flow operations of a HIC: the behavior and

communication of a HIC are determined by two sets :

Hic.Comp and Hic.Comm respectively, set of its

computational operations and set of its communication

operations. Hic.Comp determines the way a HIC

computes its behavior at the border of adjacent MoCs

and Hic.Comm determines the way it sends the data

towards a consumer actor. Hic.Comm=Hic.Read !

Hic.Write={existData(),read(),isFull(),

write()} and Hic.Comp={computeBehavior()}.

Hic.Comp enables it to compute its heterogeneous

behavior. So, this is where the designer would specify

the heterogeneous behavior of the system (interpretation

of data when passing from a MoC towards another).

• Control flow operations : A HIC is controlled by

Hic.Ctrl and Hic.Clbk respectively call back operations

sent to him by the MoC and recall operations that it

sends to the MoC. Hic.Ctrl = {initialization(),

preCondition(),trigger(),postCondition()}

and Hic.Clbk = {finish()}, operation by which it

notifies the end of its activities to the MoC.

• Set of execution operation of a HIC : Hic.Oper is

the union of all the operations that a HIC can perform:

Hic.Oper = Hic.Comm " Hic.Comp " Hic.Clbk =

{existData(),read(),isFull(),write(),

computeBehavior(),finish()}. We give a

summary of HIC operations in table 1 below.
TABLE I

HIC OPERATIONS BEFORE PARTITIONING

Since a HIC is projected in various subsystems, it is

fair to wonder about the way it will share its internal

variables and operations with its projections.

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

IV.2. Structural partitioning of HIC

During the partitioning process, the projection of a

HIC is simply the same HIC placed in a given

subsystem. However, since this projection has removed

its ports that do not obey the MoC of the subsystem

onto it is projected, it looks like a homogeneous actor of

this subsystem. The global behavior of the HIC is at the

border of several MoCs, and can be performed only by a

component not belonging to any subsystem. This is why

the internal variables will be managed by the HIC itself.

After system partitioning, a projection is connected to a

channel via its port as shown on Fig. 8. This is why, all

the interface variables of the projections will be shared

with the interface variables of the HIC that is the source

of this projection.

IV.3. Operational partitioning of a HIC

The partitioning is made according to communication

and behavior. Thus, some operations are performed by

the projections of the HIC and others by the HIC itself.

In the same way, from the point of view of control, the

partitioning is elaborated in such a way that the

heterogeneous execution model performs some controls

and delegates execution to the regular MoCs.

• Communication operations : According to the

resulting structure of the HIC, the projections are

connected to the different communication channels in

the subsystems. As for the communication operations,

existData() and read() will be performed by the

input ports of HIC that is shared with the corresponding

ports of its projections. isFull() and write() will

be performed by the output ports of HIC that is shared

with the corresponding ports of its projections.

Fig. 8. Structure and operations partitioning of HIC.

Behavior Computational Operation: Because of the

heterogeneity, the behavior computation operation is

assigned to a HIC and computeBehavior()is invoked

by its trigger() which is itself invoked by the

trigger() of its projections. The execution of a HIC

is included in the execution of its projection.

• Control operations: The heterogeneous execution

model is relieved of data transfer between two

heterogeneous actors. It is not informed of the different

MoCs used by the various subsystems that it controls.

Thus, it has to delegate all the local control of the

subsystems to their respective local MoC. Thus, the

control of each projection is exclusively delegated to the

MoC that governs its subsystem. Its MoC ensures its

triggering and detects the end of its activities.

• A projection is controlled by its MoC by the

operations initialize(), preCondition(),

postCondition(), trigger(). It notifies the end

of its activities to its MoC by finish(). Its call-backs

getModEx() and requestBehaviorComputing()

request respectively the nature of its MoC and the

triggering of its original HIC by the flat heterogeneous

execution model in order to compute its behavior.

• A HIC is directly controlled by the flat

heterogeneous execution model by its initialize(),

preCondition(),trigger(),postCondition().

By getModEx(), it will request the nature of its MoC

and it notifies the heterogeneous execution model of the

end of its activities by finish().

IV.4. Specification of the behavior of a HIC

When a projection of a HIC onto a subsystem is

activated by the local MoC that governs this subsystem,

a HIC must process inputs, produce outputs or update its

internal state. The scheduling algorithm of the

heterogeneous domain ensures that all the projections of

a HIC that take input data are activated before any

projection that must produce outputs is activated.

However, when we design a HIC, we do not know in

which order its inputs will be available because we do

not know how it will be projected on the domains it

uses. It is not possible to specify the behavior of the

HIC for each of its domains, because it may happen that

several terminals that use the same MoC be projected

onto different subsystems. Therefore, the only solution

to specify the behavior of a HIC is to specify how its

state is updated for each possible set of known inputs,

and to compute its outputs from the known inputs and

the current state. This makes programming HICs less

simple than regular components because the code must

check which inputs are known before processing them.

V. Modeling of Flat Heterogeneous

Execution Model

The simulation of such a flat heterogeneous system

requires a heterogeneous execution model that is able to

interpret the flat model in the hierarchical approach.

This execution model ensures the management of HICs,

the partitioning of the system into homogeneous

subsystems, the delegation of the computation of the

behavior of the subsystems to their MoC, the static

scheduling of the subsystems and the coordination of

the communications between subsystems. We designed

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

this execution model to operate into three phases:

partitioning of the system into subsystems, scheduling

of the subsystems and execution.

V.1. Partitioning the system

During the initialization phase, the execution model

divides the system at the border of the MoCs, and

creates homogenous subsystems. The HICs are

projected onto each subsystem to which some of their

ports belong, and the other actors are transferred to their

associated subsystems. Then the execution model copies

the connections from the original system to the

subsystems and generates virtual dependencies between

the projections of a HIC on the same subsystems.

The partitioning algorithm minimizes the use of

abstract homogeneous channels by first performing a

topological sort on the actors. Then, for each actor, in an

order which is compatible with the topological sort, it

looks for a subsystem that uses the MoC of the actor. If

such a subsystem exists, it puts the actor there if the

dependencies allow it; else a new subsystem is created

to host the actor. The condition on the dependencies

must be respected so that the subsystems can be

scheduled. To put an actor Ai in a subsystem Sj, the

following conditions must hold:

• Ai must use the same MoC as Sj

• There is no path from Ai to any actor of Sj that goes

through a HIC.

These conditions ensure that there won’t be cross

dependencies between subsystems. For instance, on Fig.

9, if we put Ad1 and Cd1 in the same !1 subsystem (they

both obey the MoC d1), and Bd2 and Dd2 in !2

subsystem (they both obey the MoC d2), we cannot

schedule the two subsystems because the projection of

the HIC in !1 must be activated after Bd2 which is in

!2, and the projection of the HIC in !2 must be

activated after Ad1 which is in !1, so there is no possible

schedule of !1 and !2. In this case, the algorithm will

build four subsystems, each one containing an actor and

a projection of the HIC.

Fig. 9. !1 and !2 cannot be scheduled.

The above conditions may hold for more than one

subsystem for a given actor, in which case we choose to

put the actor in the subsystem that already contains a

projection of the HIC which belongs to the same

segment as the actor if any, or we will put it in the most

recently created compatible subsystem.

V.2. Scheduling of the subsystems

Our flat heterogeneous execution model relies on the

schedulers of the subsystem MoCs to schedule the

actors inside, so that it does not depend on the semantics

of their MoC. The precedence between subsystems is

induced by the abstract homogenous channels (between

actor relays) and the abstract heterogeneous channels

(between HIC projections). A subsystem !1 precedes

another subsystem !2, and we note !1 < !2 if either !1

contains an output relay and !2 contains the matching

input relay or !1 contains a projection of a HIC which

has inputs and !2 contains a projection of the same HIC

which has outputs. The scheduling of the subsystems

should be done according to the precedence induced by

the HICs and the relays used to preserve homogenous

communication channels across subsystems. However,

because of the reasons that lead to the creation of relays,

the precedence induced by relays on subsystems is

always also induced by the HICs. Therefore, it is

sufficient to take only the precedence induced by the

HICs into account for scheduling the subsystems. After

partitioning the system, the heterogeneous execution

model builds a skeleton of the partitioned system that

contains only the projections of the HICs and their

dependencies. A topological sort of this skeleton is then

used to determine the precedence relation on

subsystems, and any order which is compatible with this

relation of precedence is a possible scheduling of the

subsystems.

V.3. Example of partitioning and scheduling

Consider the flat heterogeneous system of Fig. 10.

Fig. 10. Example of a flat heterogeneous system.

The partitioning of this example is shown on Fig. 11.

(1) A cannot be put in the same subsystem as any other

actor since actors that are on the same side of H1 do not

use the same MoC, and actors which use the same MoC

are reached by crossing a HIC, so A will be alone with

the projection of H1 in its subsystem. (2) B, C and E use

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

the MoC D2 and will be put in the same subsystem.

However, D and H cannot be grouped with them

because there is a path from C to D through H1, and

there is a path from C to H through H1 and H2. (3) F

can be put with D and E because they use the same

MoC and do not communicate through a HIC. G is the

only actor that uses D1 to the right of H1, so it will be in

its own subsystem. (4) Since E and H are connected but

are not placed in the same subsystem, there will be two

relay actors Tx and Rx that handle communications

along this abstract homogenous channel.

Fig. 11. Partitioning of the system.

The skeleton of this partitioning is shown in Fig. 12

and yields the following precedence relations:

!1 < !3 !2 < !3 !4 < !4

!1 < !4 !2 < !4 !3 < !5

Fig. 12. Skeleton of the example system.

That gives the four following schedules:

 !1 !2 !3 !4 !5 !1 !2 !3 !5 !4

!2 !1 !3 !4 !5 !2 !1 !3 !5 !4

V.4. Execution of a heterogeneous iteration

Scheduling makes it possible to activate the

subsystems according to a well-defined sequencing.

When this sequencing executes a complete cycle, we

call it an “iteration” of the system. Since we forced on

the heterogeneous execution model not to know the

MoCs used by its subsystems, the interactions between

the execution model and the subsystems will only be the

activations and calls-back.

V.5. Execution in "1

The execution in !1 is shown on the Fig. 13. Suppose

that !1 receives an initial triggering coming from the

heterogeneous execution model M.

(1) M triggers !1; (2) !1 performs A1; (3) A1 checks the

availability of HicTx; (4) A1 writes data to channel C1;

(5) A1 notifies !1 of the end of its activities; (6) !1

triggers HicTx; (7) HicTx requests the triggering of the

original HIC by M ; (8) M triggers the HIC; (9) the HIC

computes its behavior; (9-1) the HIC checks data

available on C1; (9-2) the HIC reads data from C1; (10)

the HIC notifies M of the end of its activities; (11) M

returns; (12) HicTx notifies !1 of the end of its

activities. The same execution process happens in !2.

Fig. 13. Execution process in !1.

VI. Integration and simulation in Ptolemy II

VI.1. Integration

This approach has been integrated in PTOLEMY II [1].

This hasn’t required any change to the Ptolemy kernel.

Its implementation is just another Ptolemy II domain. A

flat heterogeneous model is a composite actor controlled

by a heterogeneous Director called “FHDirector” and

using one or several HICs that extends the HicActor

class which inherits from the class AtomicActor; any

class of HIC must extend it. The methods

initialize() and fire() must be overwritten to

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

allow the computation of the heterogeneous behavior.

Depending on the specification of a HIC, the methods

prefire() and postfire() could also be

overwritten to implement some specific constraints. The

class diagram of HicActor is shown on Fig. 14

Fig. 14. UML Class diagram of HicActor.

The class FHDirector which extends the class

Director has also been defined. The methods

preinitialize(),initialize() and fire() are

overwritten to make it possible for FHDirector to deal

with the additional tasks of subsystems creation, HIC

projection, actors motion their associated subsystems,

ports management in subsystems and scheduling of the

subsystems.

Fig. 15. UML Class diagram of FHDirector.

The FHDirector execution phase is performed during

its fire()operation. Partitioning and scheduling

phases are respectively executed in preinitialize()

and initialize(). preinitilalize() being

where the system creates receivers and validates

attributes and ports, receivers for consuming actors

(including projections) will be supplied by the regular

Directors after partitioning. This occurs when

FHDirector invokes preinitialize() in its super

class witch invokes the same method on the subsystems,

which also invokes that operation in their respective

directors to create receivers on projections, validate

their attributes and ports. During this operation,

FHDirector invokes its divideSystem() to divide the

system at the border of MoCs. Then,

computeDomainsSchedule() is called to

schedule the subsystems before the execution phase. In

the iteration phase, if the subsystem is ready to be

performed, FHDirector invokes its fire() method in

which the projections request the activation of their

HICs from FHDirector.

VI.2. Simulation in Ptolemy II

Let’s model a simple system that uses three MoCs:

SDF, DE and DT at the same level of hierarchy.

Fig. 16. Simulated system

The system was built by assembling actors using the

Java API of PTOLEMY II. Fig. 17 shows the result of the

simulation in PTOLEMY II. The upper plot is the original

sinusoid signal, the middle one is the amplified signal

and the lowest is the events that drive the rectification.

Fig. 17. Result of the simulation

Aimé Mokhoo Mbobi, Frédéric Boulanger, Mohamed Feredj

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n. x

VII. Conclusion

We presented a flat heterogeneous modeling approach

that allows more natural modeling of heterogeneous

interface components and gives more control on the

semantics of the interactions between MoCs. This

approach offers several advantages since the use of

components that have heterogeneous inputs or outputs

allows the use of several MoCs at the same hierarchical

level of a model, and the explicit specification of the

heterogeneous behavior by the designer in the HICs

allows him to specify what happens at the boundary

between different MoCs. Nevertheless, this approach

does not support dependency loops between

heterogeneous subsystems. However, if a loop is local

to a subsystem and if the corresponding model of

computation supports loops, the loop is accepted and its

semantics will be given by the domain of the subsystem.

References

[1] E. Lee and all. Heterogeneous concurrent modeling and design

in Java, (Volume 1, introduction to Ptolemy II). Technical

Report No. UCB/EECS-2007-7, UC Berkeley, January 11 2007.

[2] E. Lee and A. Sangiovanni-Vincentelli, A framework for

comparing models of computation, IEEE Transactions on

computer-aided design of integrated circuits and systems, vol.

17(12), December 1998.

[3] J. Buck and R. Vaidyanathan, Heterogenous modeling and

simulation of embedded systems in el greco, Proc. the 8th

international workshop on Hardware/software, codesign, San

Diego, California, USA, no. ISBN:1-58113-268-9, November

2000, pp. 142–146

[4] C. Kong and P. Alexander. The Rosetta meta-model framework.

In Proceedings of the IEEE Engineering of Computer-Based

Systems Symposium and Workshop (ECBS’03), april 2003.

[5] B. Lee and E. Lee, Hierarchical concurrent finite state machines

in Ptolemy, Proc. International Conference on Application of

Concurrency to System Design, Fukushima, Japan, March 1998,

pp. 34–40.

[6] B. Lee and E. A. Lee, Interaction of finite state machines and

concurrency models, Proc. the Thirty Second Annual Asilomar

Conference on Signals, Systems and Computers, Pacific Grove,

California, November 1998.

[7] A. Girault, B. Lee, , and I. E. A. Lee, Fellow, Hierarchical finite

state machines with multiple concurrency models, Proc. the

DATE99 conference, March 1999, pp. 382–383.

[8] M. Mbobi, F. Boulanger, and M. Feredj, Execution model for

non-hierarchical heterogeneous modeling, Proc. the 2004 IEEE

International Conference on Information Reuse and Integration

(IEEEIRI 2004), Las Vegas, Nevada, USA, no. ISBN:

2004113902, November 1998, pp. 139–144.

[9] A. M. Mbobi, Modélisation hétérogène non-hiérarchique, Ph.D.

Thesis, Université Paris XI, December 2004. Available from

http://www.supelec.fr/ecole/si/biblio/Mbobi.pdf

[10] J. Daveau, Spécification système et synthèse de la

communication pour le co-design logiciel/matériel, Ph.D.

Thesis, INPG and TIMA Laboratory, December 1997. Available

from http://tel.archives-ouvertes.fr/docs/00/04/54/18/PDF/tel-

00002996.pdf

[11] L. de Alfaro and T. A. Henzinger, Interface theories for

component based design, Proc. the First International Workshop

on Embedded Software, EMSOFT, 2001.

[12] F. Vahid and D. Gajski, Specification partitioning for system

design, Proc. the IEEE Design Automation Conference, June

1992, pp. 219–224.

[13] W.-T. Chang, S. Ha, and E. Lee, Heterogenous simulation -

mixing discrete-event models with dataflow, Journal of VLSI

Signal Processing, Kluwer Academic Publishers, vol. 15, pp.

127–144, 1997.

[14] G. Agha, I. A. Mason, S. F.Smith, and C. L. Talcott, A

foundation for actor computation, Journal of Functional

Programming, vol. 7(1):1-72, 1997.

[15] J. Liu, J. Eker, X. Liu, J. Reekie, and E. Lee, Actor-oriented

control system design : A responsible framework perspective,

IEEE Transaction on Control System Technology, special issue

on Computer Automated Multi-Paradigm Modeling, March

2003.

[16] Keutzer, S. Malik, A. Newton, J. Rabaey, and A. Sangiovanni-

Vincentelli, System-level design: Orthogonalization of concerns

and platform-based design, IEEE transactions on computer aided

design of integrated circuits and systems, vol. 19(12), pp. 1507–

1522, December 2000.

[17] G. Agha, S. Frolund, W. Kim, R. Panwar, A. Patterson, , and D.

Sturman, Abstraction and modularity mechanisms for

concurrent computing, Proc. IEEE Parallel and Distributed

Technology: Systems and Applications, vol. 1(2), pp. 3–14, May

1993.

Authors’ information
1, RedKnee Inc., Department of Product Operations, 2560 Matheson

Blvd East, Mississauga, L4W 4Y9, Ontario - Canada

2, Supélec, Department of Computer Science, Plateau de Moulon, 3 rue

Joliot-Curie, 91192 Gif-sur-Yvette cedex, France

3, University of Science and Technology Houari Boumediene, Faculty

of Electronique and Computer Science. Department of Computer

Science USTHB, 32 Al-ALIA, Alger, Algeria

Aimé Mokhoo Mbobi is a Technology

Advisor at RedKnee Inc. in Canada. He

holds a Telecom Engineering Degree from

Enic-Telecom Lille1 in 1994, a Masters

Degree in Computer Science from Ecole des

Mines de Paris in 2002, and a Ph.D in

Computer Science from the University of

Paris XI in 2004, both in France. His

research activities include the specification

of new mechanisms which would enable

interactions between components governed

by different models of computation.

Dr. Mbobi is a member of the International

Institute of Informatics and Systemics (IIIS).

Frédéric Boulanger is a professor at

Supélec, a major French grande école. He

got his engineering degree from Supélec in

1989, and a PhD in Computer Science from

Paris-Sud University in 1993. His current

interest is in heterogeneous modeling and in

the precise definition of the interactions

between models of computation.

Mohamed Feredj is an Assistant Professor

at the University of Sciences and

Technology H. Boumediene, He has a

Computer Science engineering degree from

the University of Sciences and Technology

H. Boumediene, Algeria in 1997. He also

holds a Masters Degree in Computer Science

from the University of Versailles, France in

2002 and a Ph.D in Computer Science from

the University of Paris XI, France in 2005.

Dr. Feredj is interested in Software

Engineering, especially on Heterogeneous

Systems Modeling and Design.

